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N U M E R I C A L  S I M U L A T I O N  OF WAVE F L O W S  

C A U S E D  B Y  A S H O R E S I D E  L A N D S L I D E  

V. V. Ostapenko UDC 519.63 

A mathematical model is developed f or formation and propagation of discontinuous waves caused 
by sliding of a shoreside landslide into water. The model is based on the equations of a two-layer 
"shallow liquid" with specially introduced "dry friction" in the low layer, which allows one to 
describe the joint motion of the landslide and water. An explicit difference scheme approximating 
these equations is constructed, and it is used to develop a numerical algorithm for simulating 
the motion of the free boundaries of both the landslide and water (in particular, the propagation 
of a water wave along a dry channel, incidence of the wave on the lakeside, and flow over 
obstacles). 
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1. M a t h e m a t i c a l  Mode l  for the  Joint  Mot ion  of  a Landsl ide  and  Wate r .  In the present paper, 
the sliding of a lakeside landslide and the simultaneous wave motion of water caused by it are studied on the 
basis of the mathematical model of the first approximation of two-layer "shallow-water" theory [1, 2]. Use of 
this mathematical model to describe the process considered involves the following assumptions. 

1. The motion of a landslide can be treated as motion of an incompressible liquid in which the special 
features of landslide motion compared to the liquid are taken into account in so-called "dry friction." This 
approach to studying landslides is proposed by Grigoryan et al. [3]. 

2. The depths of the moving landslide and water remain an order of magnitude smaller than the linear 
dimensions of the landslide and lake, respectively. Hence, the motion of each of them can be described using 
one of the models of shallow-water theory [2, 4, 5]. In the present work, we employ the first approximation 
of this theory, which implies the assumption of hydrostatic pressure (its linear dependence on the depth) and 
leads, in the one-layer case, to the St. Venant equations [4]. 

3. When the landslide enters water and moves under it, the landslide and water masses are poorly 
mixed. This allows one to describe their joint motion using the first approximation of two-layer "shallow- 
liquid" theory [1, 2]. 

Under the above assumptions, the standard (spatially two-dimensional) differential equations for joint 
motion of the landslide and water in Cartesian coordinates (t, x, y) have the form 

Oh 
0--t- + div q = 0, (1.1) 

0q + div(v | q) + ghVz  = $, (1.2) 
Ot 

OH 
0--7 + divQ = 0, (1.3) 

(1.4) + div(V | Q) + ghV(Z + ~h) = F l i q  - ) k f  -[- F d r y  , 
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where h is the water depth,  z = Z+h is the water level, q = (ql, q2) is the water flow rate, v = (Vl, v2) = q/h is 
the water velocity averaged along the vertical, and H, Z -- Zbot + H,  Q = (Qx, Q2), and V = (V~, 1/2) = 
Q/ H are the same for the landslide, Zbo t is the mark of the lake b o t t o m  or the coast level, g is the acceleration 
due to gravity, A = r /R  < 1 is the ratio of the water density r to the density of the landslide R, .f is the 
force of friction between the water and the landslide, and Fliq and Fdry are the forces of "liquid" and "dry" 
frictions of the landslide on the bottom. 

Because system (1.1)-(1.4) is spatially two-dimensional, all the functions included in it depend on 
the following three independent  variables: the t ime t and the two spatial coordinates x and y. Hence, the 
differential operators  div, V, and d iv  included in the left sides of Eqs. (1.1)-(1.4) on each scalar function 
z(t, z, y) and vector functions q(t, x, y) = (ql, q2) and v(t,  z, y) = (vl, v2) act according to the formulas 

Oql Oq2 V z  = ( Oz, Oz) divq=- + ' 

 ( 1q2) + d iv (v  | q) = (vxqx) + ~yy(V2ql), (v2q2) 

The  vector of friction between the water and the landslide f and the vector of "fluid friction" of the 
landslide on the bo t tom Fli  q are calculated as follows: 

f = - k g ( , ,  - V)l , ,  - Vl, Fliq = - K g V l V l ;  (1.5) 

k = n2/h 1/3, K = N2 /H  1/3. (1.6) 

Here k and K are the friction factors determined from the Manning formulas [4], n is the roughness factor 
for the landslide, and N is the effective factor of roughness between the  landslide and the  bot tom.  

The  vector  Fdry of "dry friction" of the landslide on the b o t t o m  is calculated from the formula 

{ -7oPv/IVl, v r o, 
Fary = OP /I I, v -- O, I'I'l > OP, (1.7) 

�9 , v = 0 ,  I l<OP, 
where 

P = (rgh + RgH)/R = g(H + Xh). (1.8) 

Here P is the specific pressure of the landslide on the bot tom,  ~ = g H V ( Z  + Ah) is the force acting on unit 
mass of the landslide in the horizontal  direction, 

= 1/(1 + alVl2), a ---- const > 0; (1.9) 

0 = t an#  is the factor of "dry friction" of the landslide on the bo t tom,  and /3 is the so-called [3] angle of 
internal friction in the landslide (the maximum angle between the  horizontal plane and the plane tangent 
to the surface of the landslide at which the originally immovable landslide remains still immovable). The 
introduction of the empirical factor (1.9) into (1.7) is due to the assumption that  with increase in the speed 
of propagation of the  landslide, the influence of "dry friction" rapidly decreases, and at ra ther  high speeds, 
the motion of the  landslide becomes completely similar to the mot ion  of an incompressible liquid. 

2. S i m u l a t i o n  of  D i s c o n t i n u o u s  So lu t ions .  Since system (1.1)-(1.4) admits  discontinuous solutions 
with discontinuous waves, on these waves we must specify relations that  connect the flow parameters on 
both sides of the wavefront. The classical method of deriving a complete  system of such relations (Hugoniot 
conditions) assumes the presence of a complete set of basic conservation laws [6, 7] that  admits  a closing 
conservation law which is used to select stable discontinuous solutions [8]. In gas dynamics,  the basic system 
is the system of laws of conservation of mass, momentum,  and total  energy and the closing law is the law 
of conservation of entropy [6, 7]. In calculations of discontinuous waves using the Saint-Venant equations 
of the first approximat ion of "shallow water" theory, the system of laws of conservation of mass and total 
momen tum is adopted  [4, 7] as the basic system and the conservation law of total energy is considered the 
closing equation.  
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By analogy with the one-layer case, as the basic conservation laws for system (1.1)-(1.4), we take the 
laws of conservation of mass in layers (1.1) and (1.3) and the law of conservation of the total momentum 

0q 
~--~( + Aq) + d iv (V | Q + Av | q) + V(H 2 + Ah 2 ~- 2AhH) = F l i  q + F d r y  - -  g(H + Ah)Vz0, (2.1) 

and as the closing equation, we use the law of conservation of the total energy 

0e 
0~- + divE = G, (2.2) 

where 

e = Q.  V + Xq. v +g(H 2 + Ah 2 +2bAH), 

E =  [Q. V + 2gg (H  + Xh)]V + A[q .v+2gh(h  + g)]v ,  

G -- 2[(Fliq A- Fdry) " V "t- Af" ( V  - v) - g(Q -t- q) .  Vz0] 

[the right sides of Eqs. (2.1) and (2.2) contain quantities that remain continuous on discontinuity surfaces 
and, hence, do not influence the Hugoniot conditions]. However, the system of basic conservation laws (1.1), 
(1.3), (2.1) is incomplete since it lacks one vector or two scalar conservation laws. Therefore, we define the 
stable discontinuous solutions of system (1.1)-(1.4) as the limiting (in the limit tt ~ 0) solutions of the system 
obtained from (1.1)-(1.4) by supplementing the right sides of the momentum equations for the layers (1.2), 
and (1.4) with artificial viscosities 

w = tt[div(dryV)]v, W = tt[div(dryV)]Y, (2.3) 

where dry and dry are the positive-definite matrices of these viscosities [the viscosity w is added to Eq. (1.2) 
and the viscosity W to (1.4)]. 

The obtained limiting discontinuous solutions on discontinuity lines obey the laws of conservation of 
mass in the layers, the law of conservation of total momentum, and, in the weak sense, [8] the energy inequality 

0e 
0-'7 + divE < 0, (2.4) 

which ensures their stability. Thus, because of the incompleteness of the basic conservation laws, the relation 
on discontinuity lines depends, generally speaking, on the particular form of the artificial viscosities dry and 
dry included in (2.3). However, as test calculations showed, this dependence is rather weak, and, hence, 
the matrices of the viscositi'es dry and dry in the difference scheme given below were chosen from purely 
computational considerations of minimum spread of the front of a discontinuous wave with simultaneous 
maintenance of its monotonic profile. These requirements are best satisfied by the coefficient matrices 

c =  [q2[/2 [q2l ' 1Q2[/2 IQ2I ' 

which were used in numerical calculations. 
3. Specif icat ion of  t h e  Ini t ial  Reg ion  of Solut ion and Ini t ia l  a n d  B o u n d a r y  Condi t ions .  We 

solve system (1.1)-(1.4) in the basic rectangular region 

H = { 0 ~ < x ~ X ,  O~<y~<Y}, (3.1) 

in which we specify the marks of the lake bottom or the coast level Zbot(X, y) and two (generally, multiply 
connected) subregions f~w, fhand C H, the first of which contains water at the initial time and in the second 
there is the landslide. In view of this, we specify the initial water level zo(x, y) in the region f~w and the initial 
level of the landslide Zo(x, y) in the region Ftland- The initial depths are calculated from the formulas 

H0(x,y) = Z0(x,y) - Zbot( ,y) ill=d, 

{ z0(x,y)-- Zbot( ,Y) V(z,y) flw \ al=d, 
ho(x,y) = zo(x,y) Zo(x,y) V(x,y) E gtwf3fhand. 
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The initial water velocity is considered zero, i.e., v0 = 0, and that of the landslide is constant, i.e., V0 = const. 
On the segments of the boundaries of the internal regions f~w and ~land that are not intersected with the 
boundary of the basic region (3.1), nonpenetration conditions are imposed: 

v . n w = 0 ,  V . n l a a d = 0 .  (3.2) 

Here nw and nland are unit normal vectors to the boundaries 0f~w and 0f~laad- On segments of these boundaries 
that lie on the boundary OH of the basic region (3.1), we impose the nonpenetration condition (3.2) or 
(assuming that the flow from the region is subcritical and locally one-dimensional) specify the value of the 
issuing invariant brought on the boundary OH along the characteristic that comes from region H. 

4. S imu la t i on  of t h e  Ca lcu l a t i on  Region.  System (1.1)-(1.4) is solved by a finite-difference method 
on a fixed uniform rectangular grid. The basic calculation region is a rectangle (3.1) divided into a certain 
number of identical rectangular cells (Fig. 1) with sides A 1 and A2 along the x and y axes, respectively. Let 
us have nl = X / A 1  cells on the x axis and cells n2 = Y / A 2  on the y axis (in Fig. 1, nl = 4 and n2 = 3). The 
grid values of the scalar functions included in system (1.1)-(1.4) are specified at the centers of these cells, i.e., 
at points with the coordinates 

{ ( ( i + 0 . 5 )A l , ( j + 0 . 5 )A2) ;  0~< i~<n l - -1 ,  0~< j~<n2- -1}  (4.1) 

(circles in Fig. 1). The values of the vector functions f = (fl,  f2) are specified on the boundaries of these 
cells: the first components fl  are defined in the middles of the vertical sides of the cells (crosses in Fig. 1), 
i.e., at points with the coordinates 

{ ( i / k l ,  ( j  -']- 0 . 5 ) A 2 ) ;  0 <~ i ~< n l ,  0 ~< j <~ n2 - 1}, (4.2) 

and the second components f2 are specified in the middles of the horizontal sides of the cells (triangles in 
Fig. 1), i.e., at points with the coordinates 

{ ( ( i+0 .5)AI , jA2) ;  0 ~ < i ~ < n l - 1 ,  0<~j~<n2).  (4.3) 

The motion of the free boundaries of the liquid and landslide within the basic fixed calculation region 
(3.1) is simulated using the method of "fictitious cells" [9]. In this case, for the water and landslide, we introduce 
auxiliary arrays k~ and K~., which take only two different values 4-1 at the center of each calculation cell: 

a i j =  {(x,y): iA1 <~x~<( i+ l )A1 ,  jA2~<y ~<( j+ I )A2}  c H .  

Using these arrays, in each nth time layer, we form internal calculation regions: 

n~v = {OLij C I I :  ]~- ----- 1}, n~and ----- {aij C l-I: K~. = 1). 

We describe the variation of these regions using as an example the region fl~, which contains water. For this, 
we introduce the small number e > 0 and define 

hi ~ = h ( O , ( i + O . 5 ) A 1 , ( j + O . 5 ) A 2 ) = r  Vk~ = - 1  ( V a i j •  ~'/w),~ 
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i.e., at the initial time, we artificially "pour an e-layer of water" on the coast. If as a result of calculation, we 
obtain h~ .+1 ~< e in a certain cell aij C fl~, we assume that  h~ -+1 = r in this cell. If in each cell adjacent to the 

_ n + l  cell o~ij (i.e., having with it a common side), it turned out that  h n+l = e or z n+l <~ zij , the cell o~ij becomes 

"non-working" (or "dummy") in the (n + 1)th time layer, i.e., aij • ~7, +1 (k~ -+1 = -1 ) .  On the other hand, 
if in a certain cell adjacent to the "non-working" cell in the n th  time layer aij • fl~ (k~- = - 1 )  we find that, 

_,+1 this cell becomes "working" in the (n + 1)th time layer, i.e., simultaneously, h n+l > e and z n+l > z i j  , Oqj 

~ij c ~ + 1  (k~+l = 1). 

Variation in the internal calculation region fil~nd, which contains the landslide, occurs similarly. 
5. D i f f e r e n c e  Sizheme. As the difference scheme approximating system (1.1)-(1.4), we use an analog 

of the "cross" scheme, which is well known in gas dynamics [10]. The following notation, which is partially 
borrowed from [11], is used: f = f~-, where the superscript n denotes the n th  t ime layer and the pair of 
subscripts ( i , j )  denote the node (4.1) for scalar quantities, the node (4.2) for the first component, the node 
(4.3) for the second component of the vector quantities, and the node {( iAI , jA2) ;  0 ~< i ~< nl ,  0 ~< j ~< n2} 
for the auxiliary quantities u and U, defined by the formulas 

u = ql(u)q2(~)/h*, U = QI(v)Q2(~)/H*, 

where f(z) = (f~j + f[~-l,j)/2, f(v) =(fin, J + f~j-1) /2 '  and f* = (f~j + f~-a,i + f~ j -1  + f~-l,j-1)/4" 
For the finite-difference relations, we use the following notation: f t  = ( f~-a  _ f~j) /rn,  f t -  = (f~j - 

f ? , j ) / ~ ,  f , +  = ( f? ,+l  _ f ~ j ) / ~ ,  f .  = (f?+1,i - f ? , j ) / / x l ,  f .  = ( f i" j  - f?_I , ; ) /A1,  f : .  = (f?+l,i  - f?_I , j ) / (2A1) ,  
f ,  = ( f ? , i + l  - f ? , j ) / A : ,  f~ = (f?,j  - f ? , j _ I ) / A : ,  and f~v = (fP, j+l - f~i-1)/(2~X~), where ~ is the step of the 
scheme in the nth time layer and f~i is an auxiliary value of the grid function f~j .  

Calculations in each new (n + 1)th time layer are performed in four steps. 
In the first step, the depths hin,~ 1 and H -~.+1 and the levels z .~-+1 and Z .~-+1 ,a ',J ,,3 are calculated by the explicit 

scheme 

h t + q l ~ + q 2 y = O ,  l I t + Q l ~ + Q 2 y = o ,  z + = x b o t + H  +, z + = Z  + + h  +, 

where f +  = f~,+1. For the following three steps, we give difference equations only for the x components of the 
velocities and flow rates (the equations for the y components are written similarly). Therefore, the subscript 
1 for the first components of the flow rates, velocities, and viscosities is dropped for brevity. 

In the second step, the auxiliary values of the flow r a t e s  qbi, j and Q~,j are calculated by the following 
semi-explicit scheme ignoring friction: 

�9 ,h + Z + q t - + ( q v ) 2 , + U y + u  (~) ~ = w ,  Q t - + ( Q V ) 2 x + U y + g H  + (Z + + ) t h + ) ~ = W .  ( )  

Here w and W are the linear artificial viscosities, which, with allowance for (2.3) and (2.5), are determined 
from the formulas 

1 [(IQ(~)Iv~)~ + w = CIAl[(Iq(~)lv~)~+ (~lq(u)l o)u]' W = C2A1 (~[Q(u)lV0)u], 1 

where C1 and 6'2 = const. 
_ n + l  and [~)n+l  In the third step, the final values of the flow rates qi,j -~i,j are calculated by the implicit scheme 

taking into account friction: 

qt+ = f+, Qt+ = F1 + -  A f  + + F+y, (5.1) 

where, according to (1.5)-(1.8), 

f+ = -kg(q+/h-~) - Q+/H~)) lv  - V[, Fli+ = - K g Q + ] V I / H ~ ) ,  (5.2) 

F+y = 70g(H + + Ah+)Q+/(H~)IVI), V r O. 

Equations (5.1) subject to (5.2) at each node i, j represent a system of two equations for two unknowns 
q+ and Q+. Solution of this system gives the flow rates in the (n + 1)th t ime layer. 

651 



At the final fourth step, the velocities vV.+l and V_ -n-+l z,j z,~ are calculated from the formulas 

v + q+/h-~), V + + + = = Q /H(~) 

and the new step in time is determined: 

Tn+ 1 = A A / m a x m a x (  g ~  + Iv+l, g H-7 + IV+l). (5.3) 
13 

Here A = const < 1/2 is the margin factor and A = rain(A1, A2). 
The above difference scheme (5.3) taking into account the "implicit" friction (5.1) is a stable Courant's 

scheme in a linear approximation. It admits explicit implementation and approximates the laws of conservation 
of mass in layers (1.1) and (1.3) with a second order in space. In the absence of artificial viscosity (w = W = 0), 
it also approximates the laws of conservation of momentum (1.2) and (1.4) with a second order in space. 

The scheme proposed here is almost conservative in the sense that it approximates in a conservative 
fashion [12] the laws of conservation of mass in layers (1.1) and (1.3), the law of conservation of the total 
momentum (2.1), and, with accuracy up to o(A), it satisfies the difference analog of the energy inequality 
(2.4). By virtue of this, the limiting discontinuous shock-wave solutions obey the laws of conservation of mass 
in the layers and total momentum and are stable in the sense of satisfaction of the energy inequality (2.4). 

It should be noted that the scheme developed here is one of the most effective simple first-order- 
approximation schemes for through calculations of discontinuous solutions of system (1.1)-(1.4). With optimal 
choice of the artificial viscosities C1 and C2, it spreads discontinuities onto 3 or 4 spatial intervals without 
marked numerical oscillations. The main disadvantage of this scheme (like any other first-order-approximation 
scheme) is that  the width of the spread of the front of a discontinuous wave depends of on its intensity (this 
width decreases in proportion to the increase in wave intensity). Therefore, for each particular calculation, 
there is particular opt imum viscosity, which should be chosen specially. 

6. Tes t  Ca lcu la t ions .  This section describes test calculations of spatially one-dimensional flows by 
the difference scheme proposed above. As a first example (Fig. 2), we consider one-layer liquid flow, and as 
second and third examples (Fig. 3 and 4), two-layer liquid flow. In the first two examples, we examine the 
flow over a horizontal bottom ignoring friction. In all the calculations, it was assumed that  A = 0.1, A -- 0.4, 
and g = 10. 

Figure 2 gives, for a time T = 0.5, results of calculation of the classical test problem of the failure of 
a dam [4], i.e., the problem of decay of an initial discontinuity of depth: 

f3,4122 for 
h(O,x) (6.1) 1 for 4 < x ~ < 8  

in quiescent water. The exact solution of this problem gives a discontinuous wave propagating at constant 
speed and a falling wave. This exact solution is shown in Fig. 2 by a solid curve and the corresponding 
difference solution is shown by circles. The dashed curve shows the initial water surface defined by function 
(6.1). 

Figure 3 gives the results of calculation of the problem of decay of an initial discontinuity of the 
interface of a quiescent liquid at a time T = 0.5: 

z ( 0 , x ) = 3 ,  q ( 0 , x ) = Q ( 0 , x ) = 0 ,  Z(0, x ) = {  0.5 2.5 for for 4<x~<8.0~<x~<4' (6.2) 

Large circles show the calculated interface between the layers and small circles show the free surface of the 
upper layer. In the calculations, we set s = 0.3, C1 = 1, and C2 = 0.3. The solid curve shows the initial 
interface between the layers (6.2) of the two-layer liquid, and the dashed curve shows the unperturbed surface 
of the upper layer. 

Figure 3 show the results of numerical solution of this problem, tt is evident that  in the upper layer 
two waves propagating in different directions form: a rising wave, which propagates to the right, and a falling 
wave, which propagates to the left. These waves have almost equal amplitudes and velocities. 
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Figure 4 shows, for three successive times, results of one-dimensional numerical modeling of the sliding 
of a shoreside landslide into water, formation and propagation of the discontinuous water wave that arises 
in this case, and incidence of the wave on the opposite sloping shore. The solid curve shows the bottom, 
the  dashed curve shows the initial position of the landslide, and the dotted curve the initial position of the 
free water surface. The large circles show the calculated surface of the landslide, and the small circles the 
calculated free water surface. The scale in Fig. 4 is given in meters, and it is different on different axes: on 
the Ox axis, it is approximately 13 times smaller than on the Oh axis. In this calculation, it was assumed 
that  A = 0.3, n = N = 0.25, a = 0.2, 8 = 0.3, C1 -- 7.5, and C2 = 15. 

The initial stage of entry of the landslide in water and formation of an discontinuous water wave at 
T = 20 sec is shown Fig. 4a, and the moment of maximum incidence of the water wave on the opposite sloping 
lakeside at T = 60 sec is shown in Fig. 4b. Figure 4c shows the moment T = 100 sec when the water wave 
reflected from the sloping lakeside in the right part  of the figure begins to flow on the surface of the landslide 
which has already come down and is immovable at this time. In this case, allowance for "dry friction" (1.7) 
(8 ~ 0) leads to the landslide surface being not horizontal at the moment of establishment. 

In conclusion we note that  the numerical algorithm described in the present paper was used in [13, 14] 
for calculations of the formation, propagation, and overflow through the Usoi slide rock of the discontinuous 
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water wave produced by the sliding of a shoreside landslide into Sarez lake (Tadjikistan). 
This work was supported by the Russian Foundation for Fundamental Research (Grant Nos. 96-01- 

01546 and 96-01-01547). 
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